

ESD SERIES 1500 - 1800 - 2250 REFRIGERATION AIR DRYERS

ENERGY SAVING

Higher Efficiency, Lower Cost

The high-efficiency design and construction of ESD 1500 - 2250 cycling dryers help you achieve better performances, while reducing energy consumption. The patented, high-efficiency heat exchanger combined with a thermal mass circuit helps save energy at partial load. The refrigerant compressor is automatically deactivated to save energy when not needed.

Reliability and Simplicity through Experience

Utilizing extensive dryer design experience, OMI ESD 1500 - 2250 dryers include features like microprocessor control and no-loss drain that increase reliability and saving. Features such as dryer self-regulation and plug-and-play installation make start-up convenient, while always-available parts make ongoing maintenance simple and easy.

Advanced Environmental Sustainability

By shutting off the compressor during low loads, ESD 1500 - 2250 dryers dramatically reduce energy waste. ESD dryers use R407c refrigerant that is environmentally-friendly with the lowest Global Warming Potential to help reduce greenhouse gas emissions.

High-quality components provide longer lasting dryers that require less replacement parts, minimizing environmental impact.

NEW FEATURES

Increase Performances

24% Average Pressure Drop reduction

Better components Layout

Which improve serviceability and simplify the access to the unit for easy maintenance

Increased reliability and reduction of leaking points

Air condensation (standard)

Water and sea water cooled versions available

Innovative Control Panel

With all the main functions you would expect to control and monitor the unit:

- Anti freeze mode shuts dryer off to avoid icing
 - Alarm display: Dew Point, high/low temperature, High ambient temperature
 - Terminal for remote alarm signal
 - Remote ON/OFF
 - History of the last 50 alarms
 - Condensate drain management

New heat exchangers

Completely designed in our laboratories to grant the highest level of performances with the lowest pressure drop. The adoption of the new OMI heat exchanger is capable to replace 2 of former design and remove the inlet and outlet headers

Innovative No-loss Drain

With sensor installed directly in the moisture separator and control logic managed by the main Control Panel

High Efficiency Circulator

The circulator is positioned inside the glycol tank. The new position ensures no leaks and a better insulation of the circuit

Victaulic connections

For easy and fast pipes connection

Reliable Design

Scroll compressors with corrosion resistant materials. They feature less moving parts, are fully-instrumented and monitored for reliability and are protected by IP42 rated electrical enclosures

Reduced Footprint

30% Smaller compared with previous model

HOW IT WORKS

Capillary tube

3

Δ

6

circuit

Freon lamination devices to reduce refrigerant pressure and temperature

Solenoid drain valve

Controlled by the Control Panel, it drains the condensate when the float reaches the set level

TECHNICAL SPECIFICATIONS

	M	IODEL		ESD1500	ESD1800	ESD2250			
	C		m³/h	1500	1800	2250			
	Capacity		m³/min	25	30	37.5			
	Pressure dew point		°C	3	3	3			
	Minimum operating press	sure	bar g	3.0	3.0	3.0			
	Maximum operating pres	sure	bar g	14	14	14			
	Design inlet temperature		°C	35	35	35			
	Max inlet temperature		°C	55	55	55			
	Design ambient temperat	ture	°C	25	25	25			
ndard air cooled version	Max ambient temperatur	e	°C	45	45	45			
	Heat exchanger type			Aluminium pack					
ve	Compressor type			Hermetic Scroll Compressor					
led	Refrigerant type			R407C					
00	Compressed air pressure	drop *	bar	0.16	0.23	0.25			
ir c	Nominal Power Consump	otion*	kW	2.44	2.90	3.66			
idard ai	Max Power Consumption	ı	kW	4.93	4.93	5.42			
	Nominal Absorbed Curre	nt*	А	6.20	7.32	6.54			
and	Maximum Absorbed Curr	ent*	А	9.54	9.54	9.33			
St	Absorbed Current at Loc	ked Rotor	А	50	50	70			
	Cooling air flow*		m³/h	5800	5800	5800			
	Expansion method				Capillary tube				
	Drain type				No-loss				
	Condensate separator type	pe		Demister type					
	IN/OUT Air connections	(Internal thread)	1	3"BSP (optional 3" NPT)					
	IN/OUT Air connections	(External coupli	ng)	4" Victaulic	4" Victaulic 4" Victaulic 4" Victaulic				
	Control panel			Digital electronic controller					
	Standard Power Supply		V/Ph/Hz	400V**/ 3	ph / 50 Hz (optional 46	60**/3/60)			
	Electric protection		IP		42 (optional IP 54)				
	Installation location			Indoor					
	Water Flow*	Water	m³/h	1.9	2.1	2.7			
er on)	Water Flow	Sea water	m³/h	1.9	2.1	2.7			
vati ptio	Max water flow	Water	m³/h	2.4	2.6	3.4			
v o o		Sea water	m³/h	2.4	2.6	3.4			
l se ion	Water pressure		bar	Min. 2 - Max. 10	Min. 2 - Max. 10	Min. 2 - Max. 10			
er and s d versio	Design Water temperatu	re	°C	29.4	29.4	29.4			
	Max Water temperature		°C	40	40	40			
Vat ole	Cooling water pressure d	rop *	bar	0.59	0.75	0.63			
S ₀	IN/OUT Water connection	ons		3/4 "BSP	3/4 "BSP	3/4 "BSP			
	Water flow regulation			Pressostatic Valve	Pressostatic Valve	Pressostatic Valve			

(*) Suction of FAD 20°C, 1 bar (abs) and the following operating conditions:

7 bar (g) working pressure, 100% RH, 35°C inlet temperature, 25 °C ambient temperature, 29.4 °C water temperature.

(**) Voltage Tolerance: ± 5 %

DIMENSIONS

Model	Code		Weight					
		Α	В	С	D	Е	F	Kg
ESD 1500	08S.1500AG0.00BG	806	1012	1539	200	772	181	244
ESD 1800	08S.1800AG0.00BG	806	1012	1539	200	772	181	244
ESD 2250	08S.2250AG0.00BG	806	1012	1539	200	772	181	270

MAIN AVAILABLE OPTIONS

- Non-standard voltages: 460V/3ph/60Hz
- Available with NPT connections
- Water and sea water cooled versions available

Correction factor for working pressure												
bar	3	4	5	6	7	8	9	10	11	12	13	
FC1	0,7	0,78	0,85	0,93	1	1,06	1,11	1,15	1,18	1,2	1,22	
Correction factor for inlet air temperature												
°C		30	35		40		45		50		55	
FC2		1,2	1		0,85		0,71		0,58		0,49	
Correction factor for ambient temperature												
°C		25	30		35		40		42		45	
FC3	FC3 1		0,96	5	0,9	72	0,88		0,85		0,8	

Calculation of the dryer real flow rate

REAL FLOW RATE = Nominal dryer flow rate x FC1 x FC2 x FC3

OFFICINE MECCANICHE INDUSTRIALI

Via dell'Artigianato, 34 - 34070 Fogliano Redipuglia (GO) - ITALY Tel. ++39.0481.488516 - Fax. 0481.489871 www.omi-italy.it e-mail: omi@omi-italy.it